Social immunity in honey bee

 By Avry Pribadi

Introduction

Insect colonies, although composed of many individuals, it has function in a manner like individual organisms. Many insect species, including bees and ants, work together in colonies, and their cooperative behavior influences the whole colony member survival (1). For many years, this type of interaction has been associated to that of a single organism, which every individual in a colony acts and cooperates each other like a cell in the body of high-level organisms, such as mammals. This term for this phenomenon is called superorganism. Definition of superorganism is mostly used in describing a social unit of eusocial insects, where labor division is highly specialized and where every individual are not able to survive and very dependent by themselves for extended periods. Ants and bees are the best-known examples of such a superorganism. A superorganism can be described as a collection of many agents which can act in concert to produce phenomena managed by the collective (2) phenomena being any activities such as collecting food, caring for brood, and avoiding predators (3) choosing a new nest site (4). Moreover, superorganisms can also exhibit homeostasis, power law scaling, and emergent behaviors.

 

As superorganism, honey bee, in which categorized as eusocial insect, has led to fundamental changes, including increasing system of communication complexity as well as more frequent contacts among individuals (1). Even though superorganism is success in evolution and exhibits better communication within organism, this regular contact sometimes makes many problems in their life because it will provide proper conditions to increase the probability of pest and diseases spread between colony member. Furthermore, it is not only about high concentration of colony`s member, but also their nests provide microhabitats where parasites and pathogens find favorable humidity and temperatures along (P. Schmid-Hempel 1998 cited in (5)). As a result, natural selection has generated physiological, anatomical, and behavioral adaptations in social insects to minimize the negative impacts of parasites and pathogens (6). One of the mechanism is called social immunity.

The first definition of social immunity is conveyed by Sylvia Cremer in 2007 that mentioned that social immunity is altruistic behavior or collective action of infected individuals that give more benefit to their colony (7). This definition focused on the behavior of collective assistances and when describing immune phenomena which were depending on the multiple actions of many individuals within colony (7). Social immunity phenomenon encompassed the nature of these defenses that they cannot be presented efficiently in single individuals. However, this mechanism depends exactly on the cooperation of at least two individuals (8). Moreover, in 2010, Sheena Cotter and Rebecca Kilner (University of Cambridge)  suggested to expand the social immunity definition to become any types of immune response that have been designated to increase the fitness of the challenged individual and more recipients and described as collective immunity (8). It has been proposed for many years that the social immunity evolution can be seen as one of the major transitions in evolution. Joël Meunier (University of Mainz) recommended a thought that social immunity in the context of evolution of group living has relationship to personal and collective mechanism that has emerged and/or maintained at least because of the anti-parasite defenses (2).

Similar to all animals, every individual in social insect has immunological and physiological defenses against pest and disease agents (Schmid-Hempel 2005 cited in(5)). Nevertheless, beyond the individual immunity, social insects also show many physiological, behavioral, and organizational colony-level adaptations. Social insects reveal the fact to be many to show collective behavioral defenses accomplished by all group members cooperation, collectively avoiding, and removing parasitic infections (9). Many different mechanisms give to these social immune defenses mates. Meanwhile, others are activated on demand once pathogens are already established in the colony. Because this phenomenon is very interested, this paper is trying to find out how social immunity works social insects.

Social immunity strategies

Antimicrobial secretions produced by colony members or even taken from environment are the first collective defenses strategy (10). Bees and ants sometimes sterilize their nest by using antimicrobial substances. For instance, Formica paralugubris uses coniferous trees resin to coat their nest (11) or Trigona itama collects propolis from Mangifera indica and Agathis sp. In bees and wasps, the social evolution was followed by the evolution of stronger self-made antimicrobial substances which significantly increase in effectivity equal to group size enlargement of group size (12). Meanwhile, in ants, antiseptic ant antifungal substances are produced in the metapleural glands(13). In addition, termites secrete antimicrobial substances from their fecal pellets and from soldier frontal glands.

 

The nest strategy is collective antimicrobial behavior. In honey bees, they will behave to increase the comb temperature, that is initiated by adult bees, in response to infestation by Ascosphaera apis. This behavior uses to preventing disease development (14). This grooming behavior (an individual groom or nestmates groom) is another essential defense mechanism against parasites and pathogens widespread in all social insects. Undertaking and hygienic behavior are specific types of nest hygiene behavior which honeybees can detect and then remove parasites from the nest. Meanwhile, other behavior, namely waste management behavior, aimed to maintain nest chambers keep clean. This unique behavior is exhibited by cavity-dwelling species, such as termites and ants species (15). The other extreme behavior is shown by Temnothorax that perform altruistic behavior. Workers that are infected by entomopathic fungus are willing to leave their colony (16) and deformed workers in honey bees will crawl out of the hive (17).

 

The third strategy is organizational immunity that describes how the social organization inside nest will do interaction with epidemiological variables to create different categories of pathogen transmission (18). It is known that in honey bees and ants from different group of workers (with the similar morphological caste or age) perform similar tasks within nest organized in a centrifugal polytheism. In the inner area of the nest, which is filled with the brood, the younger workers and the queen are behaviorally and spatially segregate from older workers. The queen is cared and feed by young workers, meanwhile, older workers are mainly in outside the nest for forage or even in the nest corner for dead bodies and garbage disposal of dead bodies and garbage.

Steps in managing parasites invasion in social insects.

Parasites cause damage to social insect colonies. Parasites can either actively search for or enter the colony, or even be picked up and transported into the colony by host individuals by incidentally. Afterward, the parasite infections can be transmitted between individuals. There are some terms for spreading the parasites. The first is vertical transmission which means that parasites are transmitted from parent to offspring. The second is that parasites transmission between individuals from same generations or called horizontal transmission. In many cases, parasite invasions into a colony involve multistep process. To infect a social insect colony, parasites have to be taken from the outside environment (parasite uptake) which is commonly coming from food resources and brought to the colony (parasite intake).  Next, parasites then have to develop and grow in the internal environment within colony, and then it will spread among group members. On the other hand, parasites transmission between two group members happens when infectious individuals do contact with the infected and the uninfected individual. The next step, after infection of the focal group, parasites can move to other groups either by horizontal or even vertical (19).

 

This parasites infestation should be anticipated and managed by social insects. Social insects can interfere at each of steps in parasite infection. Host defense performance might be controlled by the colony’s life ecology and history (20). For instance, bees forage on flowers whose availability changes spatially and temporally and which moreover cannot be dominated by a single colony. Different to ants, who defend their feeding territories around their nest, bees are not able to avoid sharing feeding sites with other colonies, although flowers often being source of infections. Because of social insects work as collective, it means that they will anticipate and manage all the parasites attack together by many following mechanisms.

 

The first and second step are decreasing parasite uptake and intake. Several infections in social insect groups not only happen vertically from mother group but also come from the outside (horizontally). If parasites enter the nest actively, it will increase the infection risk depends on whether the nest is exposure to the external environment. For example, in some wasps and bees are covered within a special physical construction. Presumably, nest architecture construction evolution itself is constructed under selection by parasites (Schmid-Hempel, P. (1998 ) cited in (19). The other behaviors show in some ant species that try to hide from parasitic flies over ant foraging trail. This behavior aims to Vieira-Neto et. al. (2006) cited in (19). To inhibit parasites intake, colonies are sometimes expected to limit the entrance to parasites or infected incoming foragers. In honeybees, they have guard bees that always control the nest entrance and, together with the other workers (if necessary) send out their infected nest mates (21).

 

If the first and second step is not working to protect the parasites attack or even parasites are transmitted by vertical ways, the social insects will develop the next step (third step) which is trying to prevent parasites establishment inside the nest. The colony will enlarge their hygiene capacity to reduce parasites accumulation over time, especially for social insects nesting in soil (20). Social insects have mechanism to sterilize their nest material with antimicrobial materials that are collected from the environment or even self-produced. For example, wasps produce antimicrobial substances from their venom glands that stick to the walls of the hibernation sites to protect the next generation of wasps visiting the same hibernation site (Turillazzi et. al. (2006) cited in (19). Meanwhile, in stingless bee (Trigona itama), they collect resin and use that resin to cover all of nest parts such as honey and pollen pot, brood cell, and entrance door as well. Even, T. itama will cover alien substances that come to their nest, such as leaves, with resin.

 

A significant risk of infection probably comes from nest mates that have died from an infection within the colony. To overcome this problem, bees, termites, and ants will quickly remove this dead body from their nest Epsky, N.D., and Capinera, J.L. (1988) cited in (19), task that is often done by specialized workers. For instance, some termites bite the legs off the corpses of their infected nest mates. This activity will kill infectious parasite stages by using desiccated method (23). The other phenomenon happens in Apis cerana when their nest mates attacked by Varroa sp.; uninfected bees will help to pick the mite from infected bees. Meanwhile, in T. itama, workers will make a waste dump collection (include their nest mates dead body) inside the nest before they throw it away from the nest.

 

The fourth stage is by reducing parasite spread within colony.
Even though, there are many mechanisms above that can be used to prevent parasites infestation, yet, parasites still can find many ways to become established in the nest. Thus, in this case, more efforts need to be done to prevent the parasite from spreading among group members. How the healthy individual becomes infected is a function of the infectiousness of the infected individual. There three factors that determine this matter, i.e. (1) the number of infectious propagules that can be transferred to their nest mates, (2) its contact rate and the type of interaction with non-infected individuals, and (3) the non-infected individual’s susceptibility.

 

A social insect colony is often organized into spatial and behavioral. These organizations consist of workers that show similar tasks. Distribution of workers who have job to dispose of dead bodies and garbage takes place at the edge or outside of the nest (upper left corner). Thus, it shows that these workers do not have direct contact with the main nest. Fatal and non-critical infections can have three levels of severity: i.e. (1) lowest level when the infection is limited (like what happened garbage and forager workers), (2) intermediate level when the infection spreads within the peripheral nest area which dominantly occupied by old workers, and (3); highest level when the parasite have reached the center of the nest, where nurse bees and brood can be infected (d). The infection is fatal when the queen itself becomes infected (24).

 

To anticipate this problem, honey bee colonies have developed defense mechanisms to reduce and stop the infection spread. First, the guard bees will guard the colony entrance from infected garbage dump workers and parasite infected foragers. If this mechanism does not work or when the infection has extended to the nest, the transmission line to other individuals within the nest can be destroyed by reducing social contact (absence of interacting contacts) (24). Infected brood can be taken away from the colony. Meanwhile, the queen, the very important individual in nest are intensively nursed by workers that will give hygienic treatments, such as grooming, where infectious propagules are taken away from the body surface (19). Afterward, the social organization of the colony can be kept flexible and adjusted to probability next incoming parasites.

 

The last mechanism is by reducing potency of vertical and horizontal parasites transmission. Once a parasite has propagated inside a colony, it can be passed easily on to other group members, such as neighbor colonies and daughter colonies. Colonies can be infected by when queens lay infected brood or even accompanying workers and daughter queens obtain an infection by either vertical or horizontal transmission before leaving the parental colony. Selection efforts to avoid vertical transmission to their daughter colonies must be strong. It happens because the colony fitness depends on the next offspring production. Consequently, workers try to do the best practices to survive all their offspring. The behaviors, such as stop assisting queens when they get infected Wang, D.I., and Moeller, F.E. (1970 cited in (19) and covering brood cell with antimicrobial substances (Beattie et. al., 1986 cited in (19), have objective to avoid infection of daughter colonies. Other examples is ant queens that coat their eggs with poisons liquid which decrease fungal infections (25).

Conclusion

Like in high-level animal, such as mammals, social insects reveal their ability as superorganism to anticipate parasites attack almost similar to what happen in mammal. Social insects have evolved complex social immune systems. Social immune system in social insects forms functional barriers at every step in parasite invasion by a prophylactic combination and activated responses, such as physiological, behavioral, and spatial mechanisms. Generally, there are some stages for social insects to practice their social immunity, e.g. (1) decreasing parasites uptake and input, (2) inhibiting parasites development inside the nest, (3) reducing parasites distribution within nest and colony members, and (4) decreasing possibility of parasites to transmit in vertical and horizontal ways. A better social immunity of understanding might even lead to the reconsideration of the evolution of host behaviors that have previously been proposed to be the result of parasite manipulation, such as infected individuals that leaving the nest.

List of references

  1. Bourke, A.F.G. Principles of social evolution. Oxford, UK: Oxford University Press; 2011.
  2. Kelly, K. Out of control: the new biology of machines, social systems, and the economic world. Boston: Addison-Wesley.; 1994.
  3. Deneubourg, J.L. The Self-Organizing Exploratory Pattern of the Argentine Ant. J insect Behav. 1989;(3):159–168.
  4. Britton, N.F. Deciding on a new home: how do honeybees agree? Proc R Soc B. 2002;(269):1383–1388.
  5. Tarpy, D.R., and Seeley, T.D. Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs. monandrous queens. Naturwissenschaften. 2006;93(4):195–9.
  6. Seeley, T.D. Honeybee ecology: a study of adaptation in social life. Princeton: Princeton Univ. Press,; 1985.
  7. Meunier J. Social immunity and the evolution of group living in insects. Philos Trans R Soc B Biol Sci. 2015;370(1669):20140102–20140102.
  8. Britton, N.F. Deciding on a new home: how do honeybees agree? Proc R Soc B. 2002;(269):1383–1388.
  9. Cotter, S.C. and Kilner, R.M. Personal immunity versus social immunity. Behav Ecol. 2010;21(4):663–8.
  10. Sadd, B.M, and Schmid-Hempel P. Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr Biol. 2006;16(12):1206–10.
  11. Christe, P., Oppliger, A., Bancalà F., and Castella, G., and Chapuisat, M. Evidence for collective medication in ants. Ecol Lett. 2003;(6):19–20.
  12. Turnbull, C., Hoggard, S., Gillings, M., Palmer, C., Stow, A., and Beattie, D. Antimicrobial strength increases with group size: implications for social evolution. Biol Lett [Internet]. 2011 Mar 11;7(2):249 LP-252. Available from: http://rsbl.royalsocietypublishing.org/content/7/2/249.abstract
  13. Holldobler, B. and Wilson, E.O. The Ants. New Jersey: Springer-Verlag; 1990.
  14. Starks, P.T, Blackie, C.A., and Seeley, T.D. Fever in honeybee colonies. Naturwissenschaften. 2000;87(5):209–31.
  15. Bot, A.N.M., Currie, C.R., Hart, A.G., and Boomsma, J.J. Waste management in leaf-cutting ants. Ethol Ecol Evol [Internet]. 2001 Jul 1;13(3):205–37. Available from: http://dx.doi.org/10.1080/08927014.2001.9520772
  16. Heinze, J., and Walter, B., Moribund ants leave their nests to die in social isolation. Curr Biol. 2010;20(3):249–52.
  17. Rueppell, O., Hayworth, M.K., and Ross, N.P. Altruistic self-removal of health-compromised honey bee workers from their hive. J Evol Biol. 2010;23(7):1538–46.
  18. Naug D, and Smith B. Experimentally induced change in infectious period affects transmission dynamics in a social group. Proc Biol Sci [Internet]. 2007;274(1606):61–5. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1679870&tool=pmcentrez&rendertype=abstract
  19. Cremer, S., Armitage, S.A.O., and Schmid-Hempel P. Social Immunity. Curr Biol. 2007;17(16):693–702.
  20. Boomsma, J.J., Schmid-Hempel P., and Hughes, W.O.H. Life histories and parasite pressure across the major groups of social insects. ,. In Insect Evolutionary Ecology. M. Fellowes, G. Holloway, and J. Rolff, eds. (Wallingford: CABI),; 2005. 139–175 p.
  21. Drum, N.H. and Henbuhler, W.C. Differences in on- stinging aggressive responses of worker honeybees to diseased and healthy bees in May and July. J Apic Res. 1985;(24):184–187.
  22. Wilson-Rich N., Stuart, R.J., and Rosengaus, R.B. Susceptibility and behavioral responses of the damp wood termite Zootermopsis angusticollis to the entomopathogenic nematode Stei- nernema carpocapsae. J Inv Pathol. (95):17–25.
  23. Meunier, J. Social immunity and the evolution of group living in insects. Philos Trans B R Soc. 2015;370:20140102.
  24. Siebeneicher, S.R., Vinson, S.B, and Kenerley, C.M. Infection of the red imported fire ant by Beauveria bassiana through various routes of exposure. J Inv Pathol. 1992;(59):280–285.

 

Hama dan Penyakit Apis cerana

Hama dan Penyakit pada Lebah Apis cerana Fabr.pada Pemeliharaan

di Areal Hutan Tanaman Acacia mangium Wild. Dan Acacia crassicarpa Wild.

 

Oleh/by:

Avry Pribadi

Balai Penelitian Teknologi Serat Tanaman Hutan Kuok

 

 

Abstrak

Pembangunan hutan tanaman industri dengan menggunakan jenis Acacia mangium dan Acacia crassicarpa tidak hanya memberikan keuntungan bagi industri pulp dan kertas dalam hal pemenuhan bahan bakunya, akan tetapi juga mampu memberikan dampak positif bagi masyarakat yang tinggal di sekitar areal konsesi. Salah satunya adalah melimpahnya sumber pakan lebah madu berupa nektar yang dapat dimanfaatkan untuk budidaya lebah A. cerana.Sebagai suatu organisme,lebah A. cerana rentan terhadap serangan hama dan penyakit. Tujuan penulisan ini adalah menginformasikan hama dan penyakit pada koloni lebah A. cerana yang ditempatkan pada areal hutan tanaman A. mangium dan A. crassicarpa beserta tehnik pengendaliannya. Beberapa hama dominan yang menyerang koloni lebah A. cerana  di areal hutan tanaman A. mangium dan A. crassicarpa adalah wax moth (ngengat lilin), beruang madu, dan tabuhan. Kekurangan nutrisi berupa protein adalah penyakit yang umum dijumpai pada koloni lebah A. cerana yang ditempatkan pada areal hutan tanaman A. mangium dan A. crassicarpa adalah sebagai akibat kurang tersedianya pollen (tepung sari). Menjaga tingkat kesehatan lebah A. cerana adalah usaha yang dapat digunakan untuk mencegah serangan hama dan penyakit.

Kata Kunci: Hama dan Penyakit, Apis cerana, Acacia mangium, Acacia crassicarpa

PENDAHULUAN

Pembangunan Hutan Tanaman Industri (HTI) sejak tahun 1984 ditujukan untuk pemenuhan bahan baku bagi industry pulp dan kertas di Indonesia. Kementerian Kehutanan (2014) menyatakan bahwa luasan HTI di seluruh Indonesia mencapai angka 10 juta hektar.Sedangkan di propinsi Riau, luas areal yang dijadikan HTI mencapai 820.000 ha (Jikalahari, 2004).Adapun jenis tegakan yang banyak dipilih oleh perusahaan pemegang areal konsesi HTI adalah Acacia mangiumdi lahan mineraldan Acacia crassicarpauntuk di lahan gambut. Alasan pemilihan jenis A. mangiumdan A. crassicarpasalah satunya adalah berdasarkan kualitas kayunya yang berada pada kelas I s.d II (pada kategori berat jenis dan kadar air), kelas II (pada kategori kadar lignin dan selulose, dan kelas I s.d II (pada kategori dimensi serat) (Suhartati et. al., 2013).Selain itu, A. mangium termasuk jenis tanaman HTI yang memiliki kemampuan tumbuh yang cepat dan mudah tumbuh pada kondisi lahan yang rendah tingkat kesuburannya, seperti pada lahan marginal dengan pH rendah, tanah berbatu serta tanah yang tereorsi(Leksono dan Setyaji, 2003).

Menurut Mindawati (2010), keuntungan pembangunan hutan tanaman adalah bersifat ramah lingkungan, berperan dalam mengendalikan erosi tanah, mengatur tata air, memelihara kesuburan tanah, dan sampai batas tertentu membantu penyerapan karbon dari udara.Selain itu,homogenitas tegakan A. mangium dan A. crassicarpa memiliki keuntungan dalam hal penyediaan pakan bagi lebah madu. Menurut Pribadi dan Purnomo (2013), potensi pakan lebah madu berupa nektarpada hutan tanaman A. crassicarpa umur 5 tahundapat mencapai 84,59 liter/ha/hari. Sedangkan menurut Purnomo et al. (2009), pada areal hutan tanaman A. mangium umur 1 dan 3 tahundapat menghasilkan nektar masing masing sebanyak83,25 liter/ha/hari dan 141,52 liter/ha/hari.

Apis cerana adalah salah satu jenis lebah lokal yang banyak dibudidayakan oleh masyarakat desa di Indonesia).Meskipun memiliki produktivitas yang lebih rendah dibandingkan lebah Apis mellifera, jenis ini banyak dipilih oleh masyarakat terutama daerah pedesaan karena kemudahan dalam usaha budidayanya (Morse, 1985) dan lebih tahan serangan hama tungau (Varroa destructor) yang menyebabkan kerusakan parah jika menyerang lebah Apis mellifera. Permasalahan yang kemudian muncul dalam pengelolaan lebah A. ceranayang dibudidayakan pada areal hutan tanamanA. mangium dan A. crassicarpa adalah serangan hama dan penyakit. Meskipun lebah  A. cerana memiliki kecenderungan lebih tahan terhadap serangan hama dan penyakit dibandingkan jenis lebah A. mellifera, serangan hama dan penyakit pada koloni lebah A. cerana yang ditempatkan pada areal hutan tanaman A. mangium dan A. crassicarpa dapat menyebabkan lari dari kotak pemeliharaanya (absconding).

Oleh sebab itu, tujuan penulisan artikel ini adalah untuk menginformasikan hama dan penyakit pada koloni lebah A. cerana yang ditempatkan pada areal hutan tanaman A. mangium dan A. crassicarpa beserta aspek pengendaliannya.

Hama

Definisi hama adalah organisme hidup yang kehadirannya adalah tidak diinginkan karena dapat menyebabkan kerusakan bahkan kematian pada tanaman, manusia ataupun hewan (dalam hal ini adalah lebah madu) (USAID, 2010). Berbeda dengan penyakit,  ciri-ciri hama menurut Rianawaty (2011) antara lain (1) dapat dilihat oleh mata telanjang, (2) umumnya dari golongan hewan (tikus, burung, serangga, ulat dan sebagainya), dan (3) cenderung merusak bagian tertentu saja. Terdapat beberapa jenis hama yang menyerang koloni lebah A. cerana di hutan tanaman A. mangium dan A. crassicarpa, yaitu:

  1. Hama Ngengat lilin /Wax moth

Ngengat lilin (Galleria sp.)(Lepidoptera) merupakan salah satu kelompok serangga yang berasal dari ordo Lepidoptera yang menyerang sarang lebah A. cerana.Gejala koloni lebah A. cerana yang terserang hama ini adalah mengalami kemunduran pertumbuhan sisiran dan cenderung mengelompok pada satu sisi stup. Bahkan menurut Koetz (2013), meskipun jenis lebah A. cerana relatif lebih kuat dibandingkan A. mellifera, lebah A. cerana sangat rentan terhadap serangan hama wax moth. Sedangkan tanda kehadiran hama ini adalah keberadaan serat-serat kapas yang lengket dan bahkan terkadang serat kapas tersebut melengketkan antar sisiran (Gambar 1).Kerusakan yang ditimbulkan dimulai dengan memakan sisiran sarang yang terbuat dari lilin dan jika telah rusak maka hama ini akan mulai berkembang di dalam sarang. 

Siklus hidup Galleria sp. serupa dengan anggota kelompok ordo Lepidoptera yaitu metamorphosis sempurna.Fase dimulai dari fase telur yang diletakkan di dalam sisiran sarang oleh ngengat betina dewasa pada malam hari dan ditempatkan pada lokasi yang tersembunyi agar tidak dapat ditemukan oleh lebah pekerja.Sekali bertelur, ngengat betina dewasa mampu menghasilkan 50-100 buitr telur (Somerville, 2007).Koloni yang memiliki anggota lebah pekerja yang relatif sedikit akan menjadi lebih rentan terhadap serangan hama ini (FAO, 2015). Selanjutnya telur akan menetas menjadi larva. Pada fase larva inilah merupakan fase yang paling berbahaya bagi koloni lebah A. cerana(Gambar 2).Hal ini disebabkan pada kondisi ini, larva Galleria sp. membutuhkan makanan yang sangat banyak untuk mempersiapkan fase pupa sehingga keadaan ini membuat kerusakan yang sangat berat pada sisiran sarang A. cerana(Somerville, 2007).

 

Pengendalian serangan wax moth dapat dilakukan dengan beberapa metode, yaitu menggunakan obat kimia dan pencegahan dengan memodifikasi stup. Penggunaan gas Phosphine menunjukkan efektivitasnya dalam mematikan seluruh wax moth pada seluruh fasenya (Somerville, 2007). Akan tetapi, penggunaan gas ini bersifat racun bagi koloni lebah sendiri dan bahkan berbahaya bagi manusia. Selain itu, residu dari gas ini juga diduga dapat mengendap pada sisiran sarang dan dapat mencemari madu terutama apabila sedang musim bunga atau koloni sedang pada fase produksi madu. Oleh sebab itu, gas ini dilarang digunakan sewaktu koloni lebah sedang produksi madu (FAO, 2015).

Tehnik pengendalian lainnya adalah melakukan modifikasi ukuran pintu keluar dan masuk kotak lebah. Tehnik ini mengadopsi metode yang digunakan untuk mencegah serangan hama kumbang yang menyerang koloni lebah Apis mellifera. Menurut Ellis et. al. (2002), pengecilan pintu masuk umum digunakan untuk mencegah masuknya hama small hive beetles pada koloni lebah A. mellifera. Modifikasi ukuran pintu keluar dan masuk ini dilakukan untuk mencegah ngengat betina untuk masuk dan meletakkan telur di dalam sarang. Modifikasi dilakukan dengan mengecilkan tinggi ukuran pintu masuk hingga seukuran lebah pekerja A. cerana (±0,4 cm). Tinggi tubuh ngengat betina Galleria sp. lebih dari 0,5 cm akan membuat ngengat betina ini kesulitan untuk masuk ke dalam koloni lebah A. cerana.

Selain itu, tingkat kesehatan koloni lebah A. cerana juga mempengaruhi ketahanan mereka terhadap organisme asing yang masuk. Ketidakseimbangan antara jumlah lebah pekerja dengan luas sisiran yang harus dierami juga menjadi factor pemicu yang dapat memancing wax moth untuk bertelur. Ketidakseimbangan ini salah satunya disebabkan oleh keberadaan ratu baru yang pergi keluar dari kotak dengan membawa sebagian anggota lebah pekerjanya untuk membentuk koloni baru (pecah koloni) sehingga menyisakan sisiran yang tidak tererami (Somerville, 2010).

2.   Beruang madu

Beruang madu (Helarctos malayanus) merupakan salah satu kelompok dari kelas mamalia yang menjadi hama bagi koloni lebah A. cerana. Hewan ini umumnya beraktivitas pada malam hari sedangkan pada siang hari akan bersembunyi di sarang mereka (Wong et. al., 2004). Menurut Pappas et. al. (2002), beruang madu memiliki ukuran tubuh hanya mencapai 70 cm pada bahunya, dan 100 s.d 140 cm jika dihitung dari kepala hingga kaki (Gambar 3). Sedangkan berat tubuhnya berkisar antara 27-65 kg dengan rata-rata mencapai 46 kg.Kukunya yang panjang, tajam dan melengkung memudahkan beruang madu untuk menggali tanah dan membongkar kayu. Sedangkan rahang yang kuat digunakan untuk  membongkar kulit kayu guna mencari serangga dan madu.Menurut Augeri (2005) beruang madu pada umumnya merupakan kelompok omnivora yang makanan utamanya adalah serangga seperti rayap, semut, larva kumbang dan kecoak hutan sedangkan buah-buahan adalah kelompok makanan kedua.Akan tetapi menurut Fredriksson (2005), kelompok hewan ini sangat suka dengan madu, terutama dari kelompok Trigona.

 

Gejala kerusakan yang disebabkan oleh hewan ini adalah hancurnya koloni beserta dengan kotak pemeliharaannya (stup) (Gambar 4). Pengamatan pada kotak lebah A. cerana yang diserang hewan ini menunjukkan bahwa beruang madu tidak hanya mengambil sisiran madu akan tetapi juga sisiran bee bread dan brood. Mayoritas serangan terjadi pada malam hari terutama pada kotak lebah A. cerana yang ditempatkan pada jalur lintasan beruang madu. Sedangkan tanda kehadiran beruang madu adalah berupa jejak kaki, cakaran kuku pada stup lebah A. cerana, dan kotorannya.

 

Menurut Fredriksson (2000) berubahnya habitat alami beruang madu yang disebabkan alih fungsi lahan dari hutan alam menjadi hutan tanaman A. mangium dan A. crassicarpa membuat populasi hewan ini menurun karena berkurangnya sumber pakan dan habitat.Berbeda dengan beruang yang hidup pada daerah dengan 4 musim, beruang madu tidak memiliki musim kawin tertentu. Beruang madu melahirkan di dalambatang kayu atau gua kecil dimana anak beruang dilindungi hingga mampu untuk beraktivitas bersama induknya (Fredriksson and M. de Kam, 1999).Menurut Fredriksson (2000), luas jangkauan beruang madu betina dan anak-anaknya mencapai 500 ha sedangkan beruang madu jantan mencapai 1500 ha.

 

Pengendalian serangan hama ini pada awalnya mengalami kesulitan karena beruang madu termasuk pada satwa liar yang dilindungi. Berdasarkan data yang diperoleh dari Konvensi Perdagangan International Satwa Liar atau CITIES (Conventional an International Trade In Endangered Spesies), beruang madu dimasukkan pada kategori Appendix I. Sehingga usaha pengendalian yang dilakukan lebih pada usaha pencegahan. Pemasangan plat seng dan peninggian standard stup minimal 2 meter merupakan salah satu solusi untuk mengatasi serangan beruang madu di areal hutan tanaman A. mangium dan A. crassicarpa (Gambar 6).

Penggunaan standar stup dengan minimal tinggi 2 meter yang dimodifikasi dengan seng plat menunjukkan efektivitas jika dibandingkan dengan standar stup tinggi 1 meter (Tabel 1). Hal ini disebabkan pada standar stup setinggi 1 meter masih berada dalam jangkauan beruang madu sehingga banyak stup yang dirusak oleh beruang madu. Pemasangan plat seng lebar (± 60 cm) dengan cara dililitkan pada standar stup bertujuan agar beruang madu tidak dapat memanjat karena kuku/cakar tidak dapat mencekram standard stup dengan kuat. Hal yang serupa juga digunakan untuk mencegah serangan beruang madu pada madu hutan. Menurut Rachim et. al. (2011), seng plat digunakan untuk mencegah beruang madu untuk naik ke pohon sialang tempat dimana lebah hutan bersarang.

Tabel 1. Efektivitas penggunaan standar stup yang dilapisi seng plat terhadap serangan beruang madu.

 

Tinggi Standar stup Acacia mangium Acacia crassicarpa
1 2 3 4 5 6 7 Jumlah stup yang rusak 1 2 3 4 5 6 7 Jumlah stup yang rusak
100 cm + + + + + 5 + + + + + + 6
200 cm + 1 + 1
300 cm 0 0

Keterangan:

+     : stup dirusak oleh beruang madu

  • : stup tidak dirusak oleh beruang madu

3.   Tabuhan

Tabuhan (Vespa sp.) atau tawon endas merupakan salah satu kelompok dari ordo hymenoptera yang menjadi hamaberbahaya bagi koloni lebah A. cerana yang ditempatkan di hutan tanaman A. mangium dan A. crassicarpa. Menurut Abrol (2006), jenis Vespa velutina dan Vespa magnifica merupakan predator utama lebah madu di Jammu dan Kashmir yang setelah selesai musim dingin, ratu tabuhan akan menyerang koloni lebah madu untuk mencari makan bagi dirinya dan larvanya. Setelah seluruh larva tersebut berubah menjadi tabuhan dewasa maka mereka mulai untuk mengembangkan koloninya tersebut.Siklus hidup tabuhan adalah metamorphosis sempurna.Siklus dimulai dari fase telur, larva, pupa, dan dewasa.Tabuhan biasa membuat luka pada buah, batang dan pucuk untuk mendapatkan nektar dan materi untuk membangun sarang. Akan tetapi jika pada kondisi tidak ada makanan, tabuhan akanmenyerang koloni lebah madu untuk mendapatkan gula dan protein (Antonicelli et al., 2003).Hal inilah yang menjadi dugaan penyebab utama terjadinya serangan tabuhan ke koloni lebah A. cerana yang ditempatkan pada hutan tanaman A. mangium dan A. crassicarpa.

Gejala yang ditimbulkan oleh serangan hama ini adalah berkurangnya jumlah lebah pekerja akibat dari dimangsa oleh tabuhan sampai pada merusak sisiran sarang. Pada gejala ringan, tabuhan akan menunggu lebah pekerja di depan pintu masuk dan bersiap untuk menangkap lebah pekerja A. cerana yang akan pergi. Sedangkan pada kondisi yang berat, tabuhan sudah dapat merusak struktur sarang dan tidak hanya memakan persedian makanan (madu dan bee bread) akan tetapi juga memangsa sel brood. Adapun tanda kehadiran tabuhan adalah keberadaan belasan sampai puluhan ekor tabuhan yang terbang di sekitar stup terutama terbang dalam posisi menunggu di depan pintu keluar dan masuk. Berdasarkan hasil observasi yang dilakukan Abrol (2006) pada bulan Agustus dimana populsasi tabuhan sedang meningkat menunjukkan bahwa jumlah tabuhan yang menyerang koloni lebah A. cerana mencapai rata-rata 24,6 ekor/hari. Sedangkan jumlah lebah pekerja yang terbunuh rata-rata mencapai 18,3 ekor/hari (Tabel 2).

 

Tabel 2.  Jumlah tabuhan yang menyerang koloni lebah A. cerana pada bulan Agustus 2004.

Tanggal dilakukan pengamatan Jumlah Tabuhan Jumlah Tabuhan yang Membawa Pulang Lebah A. cerana ke Sarangnya Lebah Pekerja yang Terbunuh
3 25 6 20
7 18 4 22
10 27 4 14.71
12 21 4 19.04
15 28 3 17.27
17 29 5 10.07
21 35 4 11.42
24 33 5 15.15
27 19 5 26.31
30 11 3 27.27

Sumber: Abrol (2006)

Apabila serangan tabuhan tidak dilakukan antisipasi atau pengendalian akan berdampak terhadap kelangsungan koloni lebah A. cerana tersebut. Hal ini disebabkan lebah pekerja yang bertugas untuk mencari nektar dan pollen akan lama kelamaan habis dimangsa oleh tabuhan. Menurut Somerville (2010), koloni lebah A. cerana pada umumnya berisi 2000 s.d 5000 ekor lebah pekerja. Nest and Moore (2012) menambahkan bahwa sekitar 40% s.d 90% dari populasi lebah pekerja adalah bertugas untuk mencari makan. Sehingga jika tidak dilakukan langkah antisipasi populasi lebah pekerja yang mencari makan akan habis dalam waktu kurang dari 2 bulan (dengan asumsi populasi lebah pekerja yang mencari makan sekitar 50% dari total lebah pekerja yang mencapai 5000 ekor).

Beberapa metode pengendalian hama ini banyak tersedia seperti pembasmian secara fisik langsung terhadap tabuhan yang terbang di depan stup lebah A. cerana, menggunakan racun, membunuh ratu, membakar sarang, dan penjebakan dengan ikan asin. Akan tetapi metode-metode tersebut kurang efektif dalam mengendalikan serangan tabuhan. Menurut Abrol (2006), tehnik pengendalian yang efektif adalah berasal dari koloni itu sendiri. Jika koloni berada pada kondisi yang sehat maka mereka memiliki kemampuan untuk bertahan dari serangan hama dan penyakit yang datang.  Bahkan Ono et. al. (1987); Ichino and Okada (1994) mengatakan bahwa lebah pekerja A. cerana japonica akan mengerubungi tabuhan (Vespa simillima) hingga membentuk bola (balling) dan membunuh mereka dengan memanfaatkan panas tubuh yang berasal dari tubuh lebah pekerja A. cerana. Bahkan Abrol (2006) menambahkan bahwa tingkat kematian lebah pekerja lebih banyak terjadi apabila jumlah tabuhan yang menyerang sedikit. Hal ini disebabkan karena koloni lebah A. cerana tidak dapat bertahan secara teroganisasi dengan tehnik balling. Metode lain adalah  dengan melakukan pemindahan stup. Pemindahan stup juga dapat dilakukan ke lokasi yang tidak ada sarang tabuhannya. Pemindahan dapat dilakukan pada waktu malam hari atau jika dibutuhkan waktu lebih dari 1 hari, koloni lebah A. cerana dapat diberikan pakan tambahan berupa air gula.

4.   Kelompok hama lain

Pengalaman menunjukkan bahwa selain 3 hama tersebut,terdapat beberapa hama lain yang menyerang A. cerana yang ditempatkan pada hutan tanama A. mangium dan A. crassicarpa, yaitu cicak, kadal, dan semut. Kerusakan yang ditimbulkan oleh cicak dan kadal adalah hanya akan mempredasi lebah pekerja. Akan tetapi jumlah lebah yang dimakan tidak banyak. Sedangkan semut akan menyerang persedian madu yang dikumpulkan oleh lebah pekerja. Akan tetapi, menurut Oldroy (2006), serangan berat semut Oecophylla smaragdina mampu membuat lebah A. cerana hijrah (absconding). Bahkan Koetz (2013) menambahkan bahwa hama minor pada lebah A. cerana adalah semut, katak, kadal, monyet, tikus pohon, burung wallet, dan harimau. Salah satu tehnik pencegahannya adalah dengan tidak menempatkannya secara langsung di tanah dan apabila menggunakan standar stup, maka wajib diberi oli ataupun kapur ajaib untuk mencegah binatang-binatang tersebut naik dan masuk ke dalam stup. Akan tetapi, kerusakan yang ditimbulkan tidak terlalu besar jika dibandingkan kerusakan yang disebabkan tabuhan, beruang madu, dan wax moth.

Penyakit

Pengertian penyakit adalah suatu keadaan yang menyimpang dari keadaan atau kondisi normal dari beberapa bagian organ ataupun system atau kombinasi dari semua hal tersebut yang merupakan manifestasi dari serangkaian gejala dan tanda (Schoenbach, 2000).Sedangkan menurut Rianawaty (2015), penyakit adalah sesuatu yang menyebabkan gangguan pada tanaman sehingga tanaman tidak bereproduksi atau mati secara perlahan-lahan.Karakteristik adalah (1) sukar dilihat oleh mata telanjang, dan (2) disebabkan oleh mikroorganisme (virus, bakteri, jamur atau cendawan) dan kekurangan unsur atau senyawa tertentu.Bahkan menurut Somerville (2005) penyakit dapat juga diakibatkan oleh kurangnya nutrisi terutama pollen seperti yang terjadi pada A. mellifera.

Berdasarkan pengamatan, serangan penyakit yang terjadi pada koloni lebah A. ceranayang ditempatkan pada hutan tanaman A. mangium dan A. crassicarpa lebih kepada kekurangan nutrisi berupa protein dibandingkan penyakit yang disebabkan oleh mikroorganisme. Menurut Pribadi and Purnomo (2013), kebutuhan protein lebah A. cerana di hutan tanaman A. mangium dan A. crassicarpa hanya bergantung pada tumbuhan bawah seperti Ageratum conyzoides dan Mimosa pudica yang keberadaannya tergantung pada intensitas cahaya yang masuk dan intensitasweeding yang dilakukan. Sehingga ketersediaan pollen akan menjadi sangat terbatas.

Tingkat kesehatan koloni lebah dapat dilihat dari persentase protein kasar (crude protein/CP) dari tubuh lebah pekerja A. cerana yang dipengaruhi oleh kualitas pakan yang dikonsumsi. Nektar diperlukan untuk memenuhi kebutuhan karbohidrat sedangkan pollen untuk memenuhi kebutuhan akan protein. Pada lebah A. cerana  yang ditempatkan pada areal hutan tanaman A. mangium dan A. crassicarpa menunjukkan penurunan tingkat kesehatan (yang dapat dilihat dari persentase crude protein) sebesar 0,034% per 30 hari dengan nilai CP berada di kisaran 31,30% s.d 33.20% (Pribadi dan Purnomo, 2013). Sehingga hal ini dapat mempengaruhi produktivitas madu yang diperoleh. Pengamatan menunjukkan bahwa produktivitas madu yang dihasilkan oleh lebah A. cerana yang ditempatkan pada areal hutan tanaman A. mangium dan A. crassicarpa akan menurun pada mulai pada bulan kedua sampai 10% (Purnomo et. al., 2009). Bahkan jika kondisi tersebut berlanjut, maka koloni lebah akan kabur (absconding).

Menurut Kleinschmidt (1982), salah satu penanda lebah yang sehat yaitu tubuh lebah mengandung CP antara 40% s.d 67 % dan untuk mendapatkan CP tubuh lebah dengan kisaran di atas 40% koloni lebah harus mengkonsumsi pollen dangan kualitas minimal mengandung protein 18 %. Menurut Mourizio (1975) pollen merupakan sumber protein yang diperlukan bagi pertumbuhan anak-anak lebah dan perkembangan lebah-lebah dewasa.Selain protein pollen juga mengandung lemak, vitamin dan mineral yang merupakan nutrisi penting bagi lebah. Menurut Dietz (1975), anakan lebah (brood) membutuhkan sebanyak 120 s.d 150 mg pollen untuk mencapai fase dewasanya. Protein yang terkandung dalam pollen berfungsi sebagai materi untuk pembentukan kelenjar hypopherengeal yang terletak pada bagian caput dari lebah yang berfungsi sebagai pembentuk royal jelly.

Beberapa usaha yang dapat digunakan untuk mengendalikan penyakit akibat kekurangan gizi ini, yaitu dengan melakukan agroforestry dan pemberian pakan pollen tambahan. Sistem agroforestri telah lama dikenal oleh masyarakat Indoensia terutama di pulau Jawa. Akan tetapi di Riau tehnik agroforestri belum banyak dilakukan oleh masyarakat. Pemanfaatan sela atau jarak tanam diantara tegakan A. mangium dan A. crassicarpa sebenarnya dapat dimanfaatkan untuk dilakukan penanaman tanaman sela. Hal ini telah dilakukan oleh Perhutani dan Balai Besar Penelitian Bioteknologi dan Pemulian Tanaman Hutan  yang mengijinkan masyarakat untuk memanfaatkan ruang yang berada di antara tegakan untuk ditanami tanaman pangan (FORDA, 2016). Kegiatan agroforestry dapat dilakukan dengan penanaman jenis tanaman penghasil pollen seperti jagung (Zea mays) (Almeida-Muradian et. al., 2005; Marchini et. al., 2006) dan sorgum (Sorghum sp.)(Pribadi dan Purnomo, 2013). Menurut Purnomo et. al. (2010), penanaman sorgum di antara tegakan A. mangium dan A. crassicarpa mampu meningkatkan tingkat kesehatan lebah A. cerana sebesar lebih dari 30% persen menjadi 58% dibandingkan lebah A. cerana yang tidak diberikan perlakuan tumpang sari (Gambar 6). Penanaman sorgum dilakukan dengan system bergilir setiap minggunya untuk menjamin ketersediaan pollen. Sorgum ditanam dengan menggunakan jarak tanam 25 cm setiap jalurnya (satu jalur setiap jarak tanam A. mangium atau A. crassicarpa). Pollen tanaman sorgum menunjukkan nilai protein sebesar 18,68% (Pribadi dan Purnomo, 2013). Sedangkan studi yang dilakukan oleh Modro et. al. (2007) dan Souza (2011) menyatakan bahwa kisaran nilai CP jagung yang diambil dari daerah Viçosa, Minas Gerais State, Brazil, adalah sebesar 21,58% s.d 28.27%. Berdasarkan hal tersebut maka diperoleh informasi bahwa penanaman tanaman sela jenis jagung dan sorgum dapat meningkatkan CP tubuh lebah A. cerana.

Bagi perusahaan HTI, kegiatan agroforestry merupakan sesuatu yang tidak menarik dan cenderung mengganggu tanaman pokok mereka (A. mangium dan A. crassicarpa). Akan tetapi, sebagai perusahaan HTI mereka memiliki kewajiban untuk memberdayakan masyarakat sekitar areal konsesi yang bersifat berkelanjutan. Salah satunya adalah dengan melakukan kegiatan agroforestry. Nilai tambah yang diperoleh mungkin tidak secara langsung didapat, akan tetapi secara tidak langsung, misalnya masyarakat sekitar areal konsesi dapat mulai merasakan keberadaan atau kehadiran hutan tanaman yang memberikan dampak positif bagi mereka. Sehingga hal ini dapat mengurangi potensi konflik antara perusahaan HTI dengan masyarakat yang tinggal di sekitar areal konsesi. Selain itu, durasi yang hanya 1 tahun bagi tanaman sela seperti jagung dan sorgum dimungkinkan tidak terlalu mengganggu tanaman pokok (A. mangium dan A. crassicarpa).

Meskipun demikian, penggunaan jagung dan sorgum sebagai jenis tanaman agroforestry untuk penyedia sumber pakan berupa pollen memiliki beberapa keterbatasan. Salah satunya adalah tingkat efektivitas penggunaannya pada tegakan di atas 1 tahun. Hal ini disebabkan karena jenis tanaman penghasil pollen ini sangat membutuhkan cahaya untuk tumbuh dengan baik. Intensitas cahaya dapat menjadi salah satu faktor pembatas pada suatu tahap pertumbuhan tanaman. Peningkatan intensitas cahaya pada suatu tahap pertumbuhan secara tidak langsung dapat meningkatkan proses fotosintesis (Pratiwi, 2010). Menurut Azrai et. al. (2014); Bunyamin dan Aqil (2015) masalah utama pengembangan jagung dan sorgum sebagai tanaman sela adalah rendahnya intensitas cahaya. Hal ini tidak sesuai dengan karakterisitik jagung dan sorgum sebagai tanaman C4 yang sensitif terhadap cahaya rendah. Taiz and Zeiger (1998) dan Cruz (1997). Sehingga jenis tanaman ini hanya efektif digunakan pada areal penanaman A. mangium dan A. crassicarpa berusia di bawah 1 tahun.

Metode lain adalah dengan pemberian pakan tambahan berupa protein. Terdapat dua jenis protein yang dapat diberikan pada koloni lebah A. cerana yaitu protein buatan dan alami (bee bread). Dibandingkan protein buatan, protein alami yang berasal dari bee bread  lebah hutan (Apis dorsata) lebih dipilih karena salah satu alasannya adalah ketersediaannya di alam yang melimpah dan belum termanfaatkan (Purnomo et. al., 2010). Pemberian bee bread A. dorsata sebagai protein tambahan dapat meningkatkan tingkat kesehatan lebah A. cerana sebanyak 30% pada pemberian di bulan kedua setelah penempatan di A. mangium (Purnomo et. al., 2010).

Kesimpulan

  1. Hama yang menyerang koloni lebah cerana yang ditempatkan pada areal hutan tanaman A. mangium dan A. crassicarpa adalah wax moth (ngengat lilin), beruang madu, dan tabuhan. Sedangkan penyakit yang umum menyerang koloni lebah A. cerana yang ditempatkan pada areal hutan tanaman A. mangium dan A. crassicarpa adalah kekurangan nutrisi sebagai akibat ketidaksediaannya pollen (tepung sari).
  2. Keberadaan hama dan penyakit pada lebah cerana salah satunya sangat dipengaruhi oleh tingkat kesehatan koloni lebah yang dapat dilihat dari nilai crude protein tubuh lebah pekerja. Koloni yang sehat dapat mempertahankan koloninya dari serangan hama dan penyakit. Sehingga tingkat kesehatan lebah pekerja harus menjadi perhatian dalam budidaya lebah A. cerana pada hutan tanaman A. mangium dan A. crassicarpa.

Ucapan terima kasih

Penulis mengucapkan terima kasih kepada tim lebah madu Balai Litbang Teknologi Serat Tanaman Hutan dan pegawai CD/CSR PT Arara Abadi atas bantuannya dalam pelaksanaan kegiatan pengembangan lebah madu di areal konsesi PT Arara Abadi.

 

Daftar Referensi

Abrol, D. P. (2006). Defensive Behaviour of Apis cerana F. Against Predatory Wasps. J Apic Sci 50(2),p: 39

Antonicelli, L., Bilo, M.B., Napoli, G., Farabollini and Bonifazi, F. (2003). European Hornet (Vespa crabro) Sting: A New Risk Factor for Life-Threatening Reaction in Hymenoptera Allergic Patients? Allergy. European Annals of Allergy and clinical Immunology 35(3),p: 199-203

Almeida-Muradian, L. B., Pamplona, L. C., Coimbra, S., and Barth, O. M. (2005).Chemical Composition and Botanical Evaluation of Dried Bee Pollen Pellets. Journal of Food Composition And Analysis 18 (7), p: 105-111.

Augeri, D.M. 2005. On The Biogeographic Ecology of The Malayan Sun Bear. Cambridge Wild Life Research Group Department of Anatomy Faculty of Biological Sciences, University of Cambridge

Aqil, M. dan Bunyamin, Z. (2015).Pengelolaan Air Tanaman Sorgum. Inovasi Teknologi dan Pengembangan, p: 188-192

Cruz, P. (1997). Effect of Shade on The Growth and Mineral Nutrition of C4 Perennial Grass Under Field Conditions. Plant and Soil 188, p: 227-237

Dietz, A. (1975). Nutrition of the Adult Honey Bee. Dadant and Sons Hamilton, Illonois

Ellis Jr, J.D., Delaplane, K.S., Hepburn, R., Elzen, P.J. (2002). Controlling Small Hive Beetles (Aethina Tumida Murray) in Honey Bee (Apis Mellifera) Colonies Using A Modified Hive Entrance.  American Bee Journal 142 (4), p: 288-290

Food and Agriculture Organization. (2010). Global Forest Resources Assessment 2010: Main report, FAO Forestry Paper 163, Food and Agriculture Organization, Roma

Fredriksson G. M. and de Kam, M. (1999). Strategic Plan for The Conservation of The Sungai Wain Protection Forest, East Kalimantan, Indonesia. The International Ministry of Forestry and Estate Crops-Tropenbos Kalimantan Project, p: 1-46

Fredriksson, G. M. (2005). Human-sun bear conflicts in East Kalimantan, Indonesian Borneo. Ursus 16(1), p: 130-137

Fredriksson, G.M. (2005). Predation on Sun Bears by Reticulated Python in East Kalimantan, Indonesian Borneo. The Raffles Bulletin of Zoology 53(1), p: 165-168

Ichino, H and Okada, I. (1994).Japanese Honey Bees Living in Hornet Nest.HoneybeeScience15(3), p: 123–124

Jikalahari.(2004). RTRWP dan Masa Depan Hutan Alam Riau; Sebuah Masukan dan Bahan Pertimbangan Untuk Revisi Perda No. 10 Tahun 1994 tentang Rencana Tata Ruang Wilayah Provinsi (RTRWP).http://www.jikalahari.org. diakses 2 Februari 2016

Kementerian Kehutanan. (2014). Kebijakan Pembangunanan Hutan Tanaman Industri: Presentasi. Jakarta: Direktorat Jenderal Bina Usaha Kehutanan, Kementerian Kehutanan, Jakarta

Kleinschmidt, G.J. and Kondos, A.C. (1976).The Influence of Crude Protein Levels on Colony Production. Australian Beekeeping 80, p: 251-257

Koetz, A. (2013). The Asian Honey Bee (Apis cerana) and Its Strains – with Special Focus OnApis cerana Java Genotype. http:// asianhoneybee.net.au/wordpress/wp-content/uploads/2013/03/AHB-behaviour-lit-review-FINAL2013.pdf. Diakses 20 Maret 2016

Leksono, B., dan Setyaji, T., 2003.Teknik Persemaian dan Informasi Benih Acacia mangium. Seri GN-RHL. Pusat Penelitian dan Pengembangan Bioteknologi dan Pemuliaan Tanaman Hutan, Yogyakarta.

Mindawati, N. (2010). RPI Pengelolaan Hutan Tanaman Penghasil Kayu Pulp.http://www.forda-mof.org/files/RPI_7_Pengelolaan_HT_Penghasil_Kayu_Pulp.pdf. Diakses 3 September 2012.

Morse, R. A., and T. Hooper. (1985). The Illustrated Encyclopedia of Beekeeping. Blanford Press, England.

Mourizio, A. (1975). Bienenbotanik. Dadant and Sons Hamilton, Illonois

Nest B.N.V. and Moore, D. (2012). Energetically Optimal Forag­ing Strategy is Emergent Property of Time-Keeping Be­havior in Honey Bees. Behavioral Ecology 23, p: 649–658.

Oldroyd, B.P. and Wongsiri, S. (2006). Asian Honey Bees: Biology, Conservation and Human Interactions. Harvard University Press Cambridge, Massachusett

Ono M., I., Okada., and Sasaki, M. (1987). Heat Production by Balling in The Japanese Honeybee, Apis cerana japonica as A Defensive Behavior Against The Hornet (Vespasimillima xanthoptera)(Hymenoptera: Vespidae). Experientia43, p: 1031 – 1032

Pappas, K., and Mc Lennan, L. (2002).Malayan Sun Bear.

http://www.honoluluzoo.org/ zookeepers_Journal/sunbear.doc.Diakses tanggal 12 Juli 2013. Pukul 13.20 WIB

Pratiwi, G. R. (2010). Tanggap Pertumbuhan Tanaman Gandum terhadap Naungan. Widyariset 13(2), p: 37-45

Pribadi, A and Purnomo.(2013). Potency Usage of Plantation Forest of Acacia mangium and Acacia crassicarpaas Source of Honeybee Forage and ItsProblem. Procedings of International Wood Research Forestry 5th, Balikpapan

Purnomo, J. (2005). Tanggapan Varietas Tanaman Jagung terhadap Irradiasi Rendah. Agrosains 7(1), p: 86-93

Purnomo, Suhendar, Janeta, S. 2010. Potensi Nektar Pada Hutan Tanaman Jenis Acacia crassicarpa untuk Mendukung Perlebahan. Laporan Hasil Penelitian Balai Penelitian Hutan Penghasil Serat, Kuok (tidak dipublikasikan)

Purnomo, Suhendar, Janeta, S. 2009. Potensi Nektar Pada Hutan Tanaman Jenis Acacia mangium untuk Mendukung Perlebahan. Laporan Hasil Penelitian Balai Penelitian Hutan Penghasil Serat, Kuok (tidak dipublikasikan)

Rachim, A., Yondra, A., Sebua, J., Radaimon, Ramli, Rintan dan Wazar. 2011. Manual Pengelolaan Madu Hutan Tesso Nilo secara Lestari melalui Pendekatan Sistem Kontrol Internal. Yayasan Tesso Nilo, WWF Indonesia

Rianawaty, I. (2011). Hama dan Penyakit pada Tanaman.https://idarianawaty.files.wordpress.com/2011/07/hama-dan-penyakit-pdf.pdf. Diakses 21 Maret 2016

Schoenbach, V.J. 2000. Phenomenon Of Disease: Concepts in Defining, Classifying, Detecting, and Tracking Disease and Other Health States. The Concept of Natural History – The Spectrum Of Development And Manifestations Of Pathological Conditions in. Individuals And Populations. http://www.epidemiolog.net. Diakses 10 Maret 2016

Somerville, D. C. (2005). Fat Bees Skinny Bees: A Manual on Honey Bee Nutrition for Beekeepers. NSW Department of Primary Industries, New South Wales

Somerville, D.C. (2010). Asian Bees: Fact Sheets. http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0003/382161/Asian-bees.pdf

Suhartati , Aprianis, Y., Pribadi, A., dan Rochmayanto, Y. (2013).  Kajian Dampak Penurunan Daur Tanaman Acacia crassicarpa Cunn.terhadap Nilai Produksi dan Sosial. Jurnal Penelitian Hutan Tanaman 10 (2), p: 109-118

Taiz, L and Zeiger, E. (1998).Plant Physiology.Sinauer Associates. Massachusetts

USAID. (2010). What is a Pest? What is a Pesticide? What are the Risks of Pesticides?.and What is USAID’s Response?. http://www.encapafrica.org/kenya2011MEO/ST_Pesticides_Safer_Use&Compliance_Kenya_15Dec2010.pdf. Diakses 10Maret 2016

Wong, S. T., C. S. and Ambu, L.(2004).Home Range,Movement and Activity Patterns, and Bedding Sites of Malayan Sun Bears(Helarctos malayanus) in The Rainforest of Borneo. Biological Conservation 119, p: 169-181

 

 

 

 

 

 

 

 

 

 

 

 

 

The origin of Apis mellifera

Apis mellifera Biogeography and Phylogeny

By Avry Pribadi

Introduction

Historically, honey bees have given many benefits for human life to meet their desire for food by providing as pollinator agent. Based on prehistoric artifacts, the relationship between humans and honeybees might start over 9,000 years ago (1). It suggests that honeybees have been being exploited mostly as long the farmer practice their farming together with religion and art (1)(2). Another study says that the earliest use of honey at least appears at the Upper Paleolithic, some 25,000 years ago. Previously, collecting honey from wild bees was a dangerous activity, such as using smoke to reduce the aggressivity of the guard bees (1)(3). By the time, nowadays, honey bees are largely domesticated and are kept in astonishing artificial hives in order to make beekeeper`s work is easier.

Honey bees belong to the order of insects known as Hymenoptera (means that they have membranous wing). This order has approximately 100,000 species and more than 25,000 has been described as of bees(3). Two conspicuous of honey bees which have been important to their evolution are clustering social behavior and managing of the cavity-nesting species such as ability to maintain the temperature of colony by thermoregulation mechanism(3). Probably, these mechanisms that make this genus are widely success distributed. The species member of genus Apis that has widely dispersed almost over the world is Apis mellifera (4). It happens because of their economic and ecology importance as main pollinators and the most productive honey maker. As a result,  that might be one reason why Apis mellifera has been chosen for the first insect species that its genome data have been recorded (5).

Based on traditional taxonomy, A. mellifera and its subspecies have been categorized as inter geographic races due to their distribution is ranging across tropical (Africa), subtropical (Mid East/Mediteranian), and temperate regions (European)(4). Ruttner (1992) said that based on their morphology, behavior, and biogeography, there is 25 of A. mellifera`s subspecies. Isolated population could be a mechanism in creating the great number of A. mellifera`s subspecies and make differences of genetic accumulation(4). One of key focus in evolutionary biology is to identify adaptive variation which is influenced by different climate (6). Both phenotypic and genetic variation among populations can be influenced by climatic factors and detected climate are important in assuming the genetic basis of specific environment adaptation (6).

There are many theories about the origin history of A. mellifera. A study by Crane (1999) who supported honey bees expanded into western North America from Asia theory, stated that the radiation of honey bees prior to human in dealing with climate changes transition during the Pleistoce(7). When the ice age that creating land bridges, it allowed honey bees to travel between continents to come to Northern hemisphere and when temperatures began to rise and the bridges are disappeared, it will lead to divergent evolution of honey bees in Northern hemisphere(8). Another theory which is widely accepted is that eastern Africa is the first honey bee species appearance. This theory proposed that the honey bee first evolved in some 40 million years ago and widely spread northwards into Europe and Eastwards into Asia. In addition, honey bees firstly appear in the Americas, Australia or New Zealand in the 17th century by European settlers(9).

For many years ago, identifying an organism (animals) based on mitochondria DNA (mtDNA)and morphology analysis  had widely used because it gives more precise result, fast, cheap, and give easiest way to understand about the phylogeny (10). Phylogeny can describe and give explanation about the relationship between many decedents that shared a common ancestry. Together with morphology analysis, these will give complete explanation about the natural history of A. mellifera. In order to address the natural history of A. mellifera, this paper will provide some explanation about biogeography, process of dispersion, and distribution of A. mellifera in the past and today.

Natural history of Apis mellifera.

Honey bees are thought originally evolved from wasps which acquired nectar and decided to be vegetarians (11). Fossil records show that honey bees probably firstly appeared at the same time as appearance of angiosperm plants in the period of Cretaceous (146 to 74 million years ago) (3,11). However, the fossils of true “Apis” were firstly discovered in the Lower Miocene has 22 to 25 million years ago in Western Germany(3). Furthermore, geographic location is the main force that makes new races classification of Apis(12). Rivers, mountain ranges, or even dessert in Africa can inhabit the cross breeding. Moreover, decedents which shared a common ancestor will have their own destiny due to different environment pressure. In this time, the subspecies formation is beginning.
The simple phylogeny description will give the approximate time for each evolutionary stage in honey bee evolution (Fig. 1). This big picture chart gives information and evidence for the times of the emergence not only A. mellifera, but also other Apis species, such as Apis dorsata and Apis cerana. So that, we can know about the position and time for each species diverge to each other. The common ancestor of honey bee appeared about 120 million years ago(13). The ancient species such as Apis florae and A. dorsata, are not known the exact date of first appearance(13). Next, the A. cerana and A. mellifera start to diverge about 6-9 million years ago. Further, in 300,000 years ago, A. mellifera started to diverge into 3 groups (C, A, and M). In 165,000 years ago, the group C evolved into 2 groups (C and O). The last divergent (about 13,000 to 38,000 years ago) each group made their own subspecies and today we have 24 subspecies of A. mellifera (14) .

In A. mellifera, there are many theories about the radiation of this species. First theory is introduced by Cornuet and Garnery in 1991 that mentioned about the expansion of A. mellifera was originally from Middle East and is divided into 3 group routes, named Africa (goup A), Europe (along the north Mediterranean coast) (group C), and group M that moved to Black Sea and northern Europe(15). The second theory was conveyed by Whitfield et. al. in 2006 that indicate that A. mellifera is originally from Africa. First, it expanded into Eurasia in two ways, i.e by passing sub Saharan routes (west Europe) and Mid East routes (east Europe). Next, the expansion is to the New World(16). In addition, Han et. al in 2012 came with the new theory that proposed the origin of A. mellifera to be in the Middle East (similar to first theory) but the group M entered Europe via using route from North Africa and enter Europe through the Iberian peninsula. On the other hand, the group C took the north Mediterranean coast route (17). The other theory that supports this hypothesis comes from Wilson. He assumed that the ability of A. mellifera in order to make a cluster in winter shows that it is a derived adaptation (11). It was pursued that because A. mellifera does not appeaar in tropical Asia, tropical African became the origin of the hypothesized ancestral for A. mellifera. In this paper, we want to choose the theory that mentioned about Africa as the origin place of A. mellifera as the first place for birth and starting to evolve.

Today, A. mellifera`s subspecies are now separated into four groupings, group A, which includes subspecies throughout Africa; group M, which includes subspecies from western and northern Europe; group C, which includes subspecies from eastern Europe; and group O, which includes species from Turkey and the Middle East(4). Nevertheless, many studies do not make a divergent for group C into groups C and O (15)(18). Further study supported this type of classifications (A, C, M, O) based on previous morphological and genetic analyses. The group M (west part of Europe) and group C (east part of Europe) have high divergences(19). Mean while, the group M closely related with group A (Africa) and the group C lineage with O (Middle East)(17). By using the root position of group A, it was assumed that modern populations of A. mellifera can be traced into two distinct migrations routes, named a western routes that forms the group M (west part of Europe) and one a eastern routes that form the group O and C (east part Europe and Asia)(17).

Based on the mtDNA analysis, it can be showed that there are differences between and within A. mellifera`s subspecies (Table 1). By using this data, the history of A. mellifera dispersion can be identified and determined. If we are using Group I (a group that consists of A. mellifera subspecies from Africa) as starting point of evolution, it can be predicted that group I has close relatedness to group II, IV, and III in chronologically order. By this information, it is true that group I migrated in two separate ways (Middle East and Northern Mediterania. The other fact that support this idea is that the divergence level between A. mellifera`s subspecies group In (northern Africa) and group II has low value. So that, this evidence gives more strong fact that the A. mellifera from group Africa migrated to the north of Africa before they took to Middle East (group II).

 

Table 1. Between and within sequence of divergence of A. mellifera`s subspecies(4).

Groups I (Africa) In (northern Africa) Is (southern Africa) II (Middle East/ Eastern Europe) III (Northern Europe) IV (Mediterania)
I (Africa) 0.61±0.03
In (northern Africa) 0.09±0.10
Is (southern Africa) 0.62±0.11 0.42±0.23
II (Middle East/ Eastern Europe) 0.90±0.23 0.80±0.18 0.98±0.25 0.61±0.0
III (Northern Europe) 1.64±0.23 1.49±0.25 1.71±0.19 1.62±0.41 0.61±0.15
IV (Mediterania) 1.26±0.13

 

1.40±0.12 1.19±0.11 1.33±0.31 1.27±0.19 0.36±0.19

 

Remark:

Group I (African)                             : A. m. intermissa, A. m. iberica, A. m. sahariensis, A. m. sicula, A. m. monticola, A.m. adansonii, A. m. scutellata, and A. m. capensis.

Group In (northern Africa)                 : A. m. sicula, A. m. intermissa, A. m. sahariensis, and A. m. iberica.

Group Is (southern Africa)                 : A. m. monticola, A. m. scutellata, A. m. capensis, and A. m. adansonii

Group II (Middle Eastern)                  : A. m. lamarckii and A. m. meda (Meda 1).

Group III (northern Europe)              : A. m. mellifera and Itmell.

Group IV (northern Mediterranean)      : A. m. ligustica, A. m. carnica, A. m. meda (Meda 2) and A. m. macedonica.

 

Mean while, group IV has different route. Based on Table 1., it is showed that the level of divergence between group IV and group Is (southern Africa) is lower than group In (northern Africa). On other word, group IV has close related with group Is instead. So that, presumably, the group IV was derived from group In. Other fact that group IV does not originate from group II is that the level of divergence between these groups is not low enough compare to group from Africa (I, Is, and In). These two facts can determine that the group IV is not completely derived from group II. On the contrary, the group IV is originated from group Africa (specifically group In) instead.

Different case happens to group III. This group shows that their divergence level to the other groups (I, II, and IV) is definitely high (Table 1). However, based on the level of “species to species” divergence analysis, it showed that A. m. mellifera  (group III) is quite close with  A. m iberica (1.22%) and A. m. sahari (1.22%) instead of A. m. lamarckii (2.13%) and A. m. meda (1.68%). Presumably, the group III originated from group I (Africa) that took different route with group II and IV. Probably, they took Sahara and Gibraltar strait to reach northern Europe instead. It is supported by species to species divergence level that showed the level of divergence between A. m. adansonii (group Africa) has lower level of divergence with A. m. iberica (0.53%) from Portugal and A. m. sahara (0.53%) from Marocco rather than A. m. lamarckii (1.07%) from Egypt.

Based on that data, A. mellifera`s subspecies groups can be classified into 3 branches from 1 origin(4). Group A consist of African subspecies group that was originally from group I, Is, and In. Next, the group C is a group for A. mellifera`s subspecies from northern Mediteranian that was previously clustered into group IV). The last clustered is group M that is originally from A. mellifera`s subspecies in northern Europe. The fourth group, previous A. mellifera subspecies from Middle East (group II) is classified into group O.

Apis mellifera`s sub species distribution today

Today there general common about A. mellifera`s subspecies based on their characteristics and places of origin. Ruttner divides the A. mellifera`s subspecies into 3 different groups, named European, Oriental (middle east), and African(20). However, between those groups, European group is most popular than other 2 groups and commercially spread to the New World (America and Australia continents).

There are at least 10 races of A. mellifera in Europe(21). However, there are 3 or 4 A. mellifera`s subspecies in European that widely used for main species for beekeeping. First is A. mellifera mellifera. This race originally from group M and widely spread in north part of Europe to west part of Russia. Second is A. mellifera ligustica. This race is the most popular races used in the world due to their productivity, gentle, and has better adaptation in facing winter(20). It is originally from Italy. The third race is A. mellifera carnica (carniolan honeybee). They are originally from Alpens Mountain to northern Yugoslavia. Fourth race is A. mellifera caucasia that originally comes from Caucasus mountain, Russia(21). Next is A. mellifera ibirensis that is classified by Engel in 1999. This races originally from Spain and Portugal(21). The other European races are A. mellifera cecropia (Greece), A. mellifera cypria (Cyprus islands), and A. mellifera sicula (Ustica of western Sicily)(21).

The African group is widely distributed from tropical region to sub tropical region. There are 13 races in this group(21). The most controversy race is A. mellifera scutellata that is originally from southern Africa. The other race is A. mellifera lamarckii that comes from northern Africa along Nile Valley(11). Another race is A. mellifera intermissa that is from north-west Africa (Libya to Marocco). The next race is A. mellifera adansonii that originally distributed in west coast Africa(11).

The last group is from Middle East and Asia. Many different races have evolved in this region. Asia Minor (Anatolia high land) is predicted as genetic source for A. mellifera`s subspecies(21). A. mellifera`s races in this region are A. mellifera anatoliaca, A.m.syriaca, , A. m. meda, and A. m. caucasica which were classified by Ruttner as a form a basal branch of the species(21). A. mellifera anatolica. The other rece is A. mellifera syriaca that is classified by Skorikov 1829 which is originally at Near East and Palestine. Another subspecies found are A. mellifera macedonia (northern Greece), A. mellifera adamii (Crete), A. mellifera armeniaca (Mid-East, Caucasus, and Armenia), A. mellifera yementica (Yemen and Oman). A. mellifera pomonella (mountains in Central Asia)(21).

Conclusion

Based on the morphology and mtDNA analysis, the evolution of A. mellifera`s races was started in Africa. From Africa, they took to northern Africa in two different ways (Middle East and Mediteranian) in order to enter Europe and East Asia continent. Today, we have 3 distinct A. mellifera`s races based on their previous routes, named European, African, and Middle East.

References

  1. Margaret Sessa-Hawkins. Human relationship with honeybees dates back 9,000 years. PBS NEWSHOUR [Internet]. 2015; Available from: http://www.pbs.org/newshour/topic/science/
  2. Engel MS, Engel MS, Hymenoptera A. Fossil honey bees and evolution in the genus Apis ( Hymenoptera : Apidae ) ( Hymenoptera : Apidae ). 1998;
  3. Us C. Honey bee origins, evolution & diversity – Ashleigh Milner – BIBBA [Internet]. 2016. p. 1–20. Available from: http://bibba.com/honeybee-origins/
  4. Arias MC, Sheppard WS. Molecular Phylogenetics of Honey Bee Subspecies (Apis melliferaL.) Inferred from Mitochondrial DNA Sequence. Mol Phylogenet Evol [Internet]. 1996;5(3):557–66. Available from: http://www.sciencedirect.com/science/article/B6WNH-45MGTWJ-1X/2/28acb84be10700ce4807e6f68f264873
  5. Kawakita A, Ascher JS, Sota T, Kato M, Roubik DW. Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes ( Hymenoptera : Apoidea : Apidae )*: Supplementary Material. Apidologie. 2008;39(39):163–75.
  6. Chen C, Liu Z, Pan Q, Chen X, Wang H, Guo H, et al. Genomic Analyses Reveal Demographic History and Temperate Adaptation of the Newly Discovered Honey Bee Subspecies Apis mellifera sinisxinyuan n. ssp. Mol Biol Evol. 2016;33(5):1337–48.
  7. Engel. A honey bee from the Miocene of Nevada and the biogeography of Apis (Hymenoptera: Apidae: Apini). Proc Calif Acad Sci. 2009;60:23–38.
  8. Weber E. Apis mellifera : The Domestication and Spread of European Honey Bees for Agriculture in North America. Univ Michigan Undergrad Res J. 2012;1622(9):20–3.
  9. Honey bee [Internet]. 2013. Available from: http://en.wikipedia.org/w/index.php?title=Honey_bee&oldid=586544203
  10. Lockhart PJ, Cameron SA, Cameron SA. Trees for bees. 2001;16(2):84–8.
  11. Winston ML. The biology of the honey bee (p. 281). Massachussets: Harvard University Press; 1987. 281 p.
  12. Ellis J. Lecture 3: Biogeography of Honey Bees. 2014;1–10.
  13. Wallberg A, Han F, Wellhagen G, Dahle B, Kawata M, Haddad N, et al. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera [Internet]. Vol. 46, Nat Genet. 10AD. p. 1081–8. Available from: http://10.0.4.14/ng.3077%5Cnhttp://www.nature.com/ng/journal/v46/n10/abs/ng.3077.html#supplementary-information%5Cnhttp://dx.doi.org/10.1038/ng.3077
  14. Michael Wainwright. Black bees at Killowen. In. Available from: http://www.killowen.com/genetics14.html
  15. Cornuet and Garnery. Mitochondrial DNA variability in honeybees and its phylogeographic implications. Apidologie. 1991;22(6):627–42.
  16. Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS, et al. Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera. Science (80- ) [Internet]. 2006;314(5799):642–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17068261%5Cnhttp://www.sciencemag.org/cgi/doi/10.1126/science.1132772
  17. Han F, Wallberg A, Webster MT. From where did the Western honeybee (Apis mellifera) originate? Ecol Evol. 2012;2(8):1949–1957.
  18. Ruttner F. Biogeography and taxonomy of honeybees. Springer-Verlag: Springer-Verlag; 1988.
  19. Garnery, L., Cornuet, J. M., & Solignac M. Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Mol Ecol. 1992;1(3):145–54.
  20. EO. W. The insect societies. Harvard: Belknap Press; 1971. Massachuset: Harvard: Belknap Press; 1971.
  21. Kumar Gupta R, Reybroeck W, Van Veen JW, Gupta A. Beekeeping for poverty alleviation and livelihood security: Vol. 1: Technological aspects of beekeeping. Beekeeping for Poverty Alleviation and Livelihood Security: Vol. 1: Technological Aspects of Beekeeping. 2014. 1-665 p.